Because substrate heat resistance is low, the temperature cannot be increased.

For curing at a relatively low temperature

Because substrate heat resistance is low, the temperature cannot be increased.

Precautions for handling

Please be sure to read MSDS before using this product to ensure safe handling.

CYTOP has different recommended baking conditions depending on the part number.

<table>
<thead>
<tr>
<th>CYTOP part number</th>
<th>Solvent</th>
<th>Characteristics</th>
<th>Example of baking conditions</th>
<th>Example of recommended temperature conditions for final baking</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 series (for Dip coating) Example: CTL-109AE CTX-109AE CTL-107MK</td>
<td>CT-SOLV100E CT-SOLV100E CT-SOLV100E</td>
<td>Solvent boiling point is 100°C. Solvent is easily volatilized at room temperature. Solvent viscosity is low.</td>
<td>Drying at room temperature: 5 to 30 min. Final baking: 60 min.</td>
<td>80°C or more 200°C or less</td>
</tr>
<tr>
<td>800 series (for Spin coating) Example: CTL-809A CTX-809A CT-809M</td>
<td>CT-SOLV180</td>
<td>Solvent boiling point is 180°C. Solvent is hardly volatilized at room temperature. Solvent viscosity is high.</td>
<td>Drying at room temperature: 5 to 30 min. Pre-baking: 10 to 60 min. at 50°C to 100°C</td>
<td>180°C or more 250°C or less</td>
</tr>
</tbody>
</table>

- Optimum baking conditions vary depending on film thickness, substrate, and process.
- The customer should study optimum baking conditions (temperature and time).
- Because the solvent is completely volatilized to improve adhesion with the substrate, it is recommended to perform final baking at as high a temperature as possible.
- If high-temperature baking is performed with solvent remaining, the coating surface may become rough (orange peel) or the uneven film thickness may occur (particularly with 800 series).
- If the coating surface becomes rough or if the film thickness is uneven, reduce prebaking temperature, extend baking time, or bake gradually as shown in the figure below. Take action to ensure the solvent dries slowly.
- The conditions are the same for a hot plate or oven.

* Recommended silane coupling agent

H₂NCH₂CH₂Si (OCH₂CH₃)₃ (3-Aminopropyltrimethoxysilane)

“KBE-903” by Shin-Etsu Chemical Co., Ltd.
“SILA-ACE S330” by Chisso Corporation

Precautions for handling

Please be sure to read MSDS before using this product to ensure safe handling.

Drying at room temperature

The purpose is to remove gas. If it is difficult to remove bubbles in the resin, extend the time of this process.

Prebaking (degas)

Time

Final baking

This process is necessary to improve adhesion with the base material.

Because substrate heat resistance is low, the temperature cannot be increased.

<table>
<thead>
<tr>
<th>CYTOP part number</th>
<th>Solvent</th>
<th>Characteristics</th>
<th>Example of baking conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 series (for Dip coating) Example: CTL-109AE CTX-109AE CTL-107MK</td>
<td>CT-SOLV100E CT-SOLV100E CT-SOLV100E</td>
<td>Solvent boiling point is 100°C. Solvent is easily volatilized at room temperature. Solvent viscosity is low.</td>
<td>Drying at room temperature: 5 to 30 min. Final baking: 60 min.</td>
</tr>
<tr>
<td>800 series (for Spin coating) Example: CTL-809A CTX-809A CT-809M</td>
<td>CT-SOLV180</td>
<td>Solvent boiling point is 180°C. Solvent is hardly volatilized at room temperature. Solvent viscosity is high.</td>
<td>Drying at room temperature: 5 to 30 min. Pre-baking: 10 to 60 min. at 50°C to 100°C</td>
</tr>
</tbody>
</table>

Solvent boiling point is 100°C.
Solvent is easily volatilized at room temperature.
Solvent viscosity is low.

Solvent boiling point is 180°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 100°C.
Solvent is easily volatilized at room temperature.
Solvent viscosity is low.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 180°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 100°C.
Solvent is easily volatilized at room temperature.
Solvent viscosity is low.

Solvent boiling point is 200°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 200°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.

Solvent boiling point is 250°C.
Solvent is hardly volatilized at room temperature.
Solvent viscosity is high.