Catalyst Supports for Organic Synthesis

Catalysts are materials that initiate, control, or increase chemical reactions without being consumed in the process. Catalysts are very important in the chemical process as they optimize throughput and regulate the byproducts of chemical reactions.

Catalyst Supports play an equally important role in the catalyst process. Catalyst supports are solid materials typically having high surface areas, porosity and are chemically inert. The catalyst supports have two main functions:
- carry/support the catalyst material
- properly distribute the catalyst for optimum chemical reactivity.

Selecting the right catalyst support is important in optimizing the manufacturing process. Several factors need to be considered:
- **Thermal Stability** affects the reaction rate between the catalyst and reacting material.
- **Shape and Packing Density** can affect fluid flow rates and processes.
- **Particle Strength** of the catalyst carrier needs to withstand catalyst preparation/loading and be able to collapse during polymerization.
- **Surface Area and Porosity** directly relate to the reactivity levels of the chemical process and also the properties of the finished product. The higher the surface area, the higher the number of sites for a catalyst to attach, which leads to higher reactivity levels.

SUNS PERA™ silica gels are excellent catalyst supports for organic synthesis because they have high surface areas, high catalyst loading capabilities, and have high particle strength.

Key Attributes
- Spherical shape
- Wide combination of particle size and porosity
 - Particle size range: 3μm - 70μm
 - Pore volume range: 0.7 - 2.3 ml/g
 - High and wide surface area range: 40 - 800 m²/g
- Uniform porosity throughout particle
- Narrow particle size and pore size distribution

Benefits
- Morphology helps control polymerization reaction
- High loading of catalyst leads to high catalyst activity
- Produces high specific gravity and high bulk density of the polymer
- Improved morphology of finished polymer
- Optimizes production
- Prevents reactor fouling

SUNS PERA™ silica gels are very spherical and have uniform porosity on the surface and throughout the particle.

Photograph of Particle Surface

Photograph of Cross section
SUNSPERA Product Selection Guide

For Organic Synthesis of Organic Compounds

<table>
<thead>
<tr>
<th>Grade</th>
<th>H-31</th>
<th>H-51</th>
<th>H-121</th>
<th>H-201</th>
<th>D-50-60A</th>
<th>D-100-60A</th>
<th>D-150-60A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean particle size (µm)</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Specific surface area (m²/g)</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Pore volume (ml/g)</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Pore diameter (nm)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Oil adsorption capacity (ml/100g)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Other grades with different particle sizes and larger pore sizes are available.

Pore Size & Particle Size Distribution

SUNSPERA M.S. GEL D-50-60A

Competitive Spherical Silica

Conventional Spray-dried

Conventional Irregular Silica

AGC Chemicals Americas, Inc.
55 E. Uwchlan Avenue, Suite 201
Exton, PA 19341
United States of America

Telephone: +1 610-423-4300
Toll Free (US only): 800-424-7833
Fax: +1 610-423-4305

www.agcchem.com
Visit our website for compliance information and industry certifications.

SUNSPERA™ is a registered trademark of AGC, Inc.