

Extending Infrastructure Durability with Ultra-Weatherable FEVE Technology

Webinar for Roads & Bridges Magazine

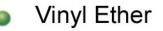
Share on social media using: **#LumiflonUSA**

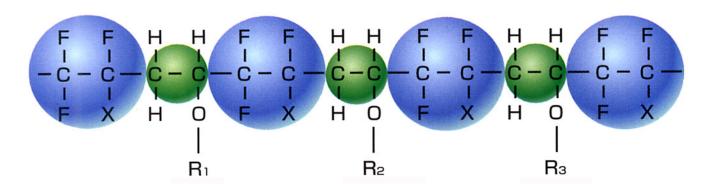
Summary of Webinar

- Explanation of FEVE technology
- Discussion of markets for FEVE technology
- Presentation of performance in exposure testing
- Life cycle cost advantages
- Examples of applied FEVE coatings

What is an FEVE Fluoropolymer?

- 1. A hybrid fluoropolymer resin with the ability to be used in standard coatings formulations like any other conventional coating resin
- 2. A high-performance resin that can withstand severe ultraviolet light exposure 2-3 times longer than conventional coatings resins





Fluoroethylene Vinyl Ether (FEVE) Resins

Fluoro Ethylene

FLUORINATED SEGMENTS: Weatherability • Chemical • Resistance

VINYL ETHER SEGMENTS: Gloss • Solubility • Crosslinking

AGC Chemicals Chemistry for a Blue Planet

Advantages of FEVE Fluoropolymer Resins

- Ambient Cure
 - Field application

OH Functional

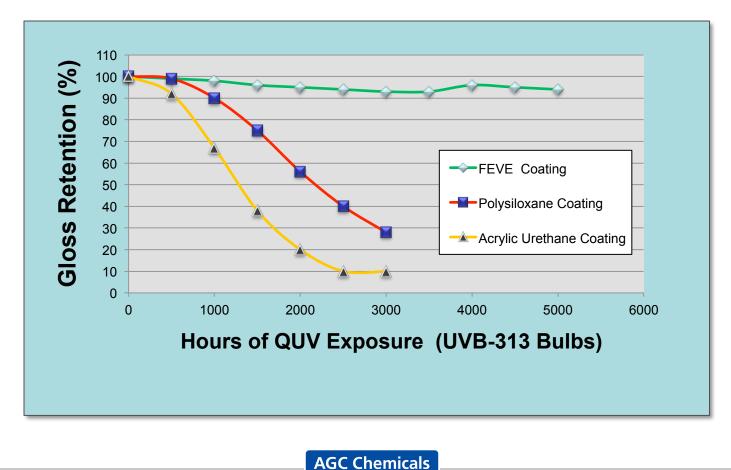
- Crosslinkable with isocyanates

Solvent Soluble

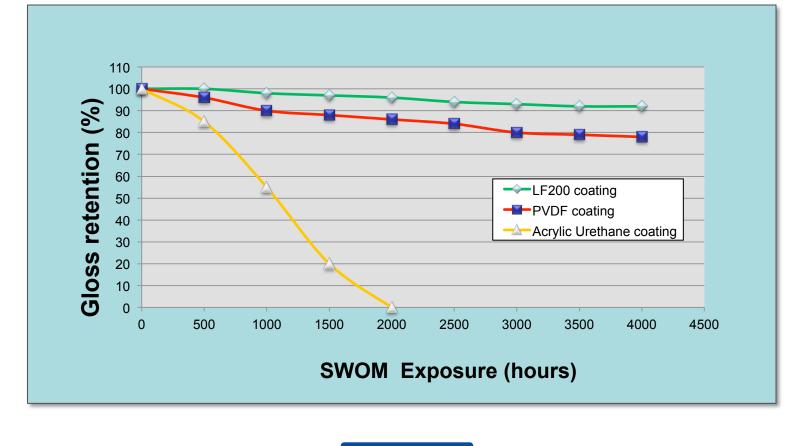
- Conventional application techniques (airless spray)
- Wide range of gloss (90@60°)

Fluoropolymer Segments

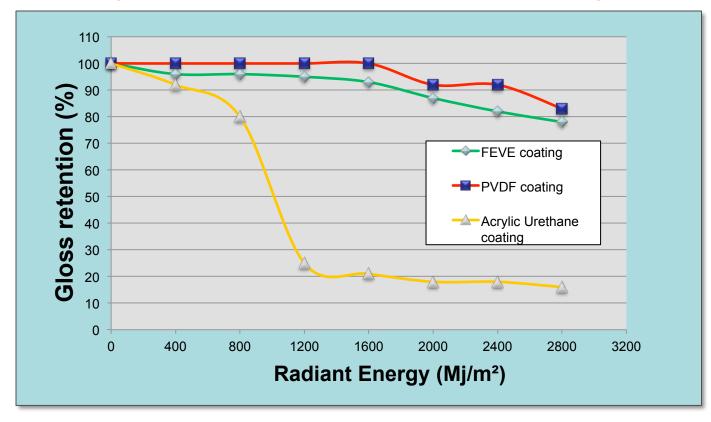
- UV Resistance
- Corrosion resistance


Markets for FEVE Resin-Containing Coatings

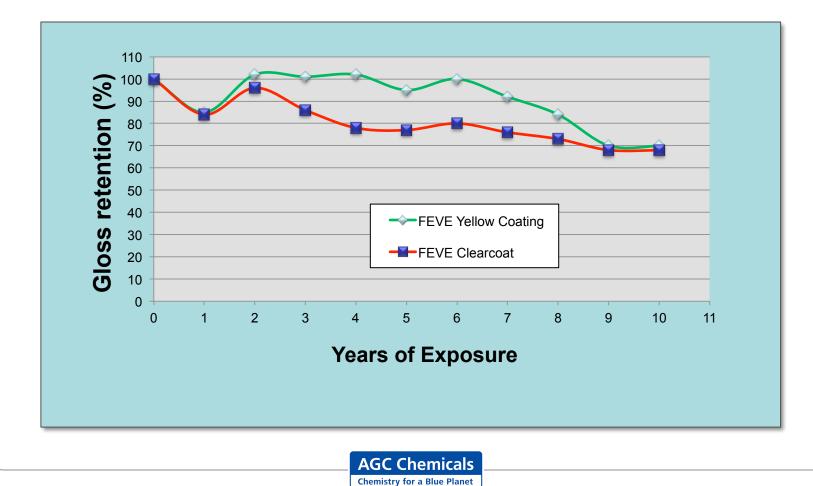
- 1. Architectural coatings for commercial buildings
- 2. Industrial maintenance coatings for water towers, bridges, assorted metal and concrete structures
- 3. Aerospace coatings
- 4. Applications in marine environments


QUV Weatherometer Exposure Testing

Chemistry for a Blue Planet


Sunshine Weatherometer Exposure Testing (Carbon Arc)

AGC Chemicals Chemistry for a Blue Planet


EMMAQUA Testing (Outside Test Fence in Arizona)

AGC Chemicals Chemistry for a Blue Planet

South Florida Test Fence Exposure

9

Corrosion Resistance Test of FEVE Coatings

- Location: Suruga Bay Marine Test Station (offshore)
- Length of Test: 16 years
- Coatings Systems on Test:
 - Zinc-rich primer, epoxy midcoat, acrylic urethane topcoat
 - Zinc-rich primer, epoxy midcoat, fluorourethane topcoat

Thickness of Coating:

- Primer: 3 mils
- Midcoat: 6 mils
- Topcoat: 1 mil (25 microns)

Measurement of Total Erosion of the Topcoat

	ACRYLIC URETHANE TOPCOAT	FLUOROURETHANE TOPCOAT
INITIAL MEASUREMENT (microns)	25	25
FINAL MEASUREMENT (microns)	0 (after 13 years)	21

Life Cycle Cost Advantages - Part I

- Initial Cost of FEVE-based Topcoat:
 - 5% to 10% higher than standard polyurethane topcoat
- FEVE-Based Topcoat Life Expectation: 30 to 60 years
- Expected Repaints of Std. Polyurethane Topcoat (30 to 60 years): - 2 to 3 (based on topcoat erosion data from offshore test)
- Additional Costs of Repaints:
 - Facility downtime
 - Lodging of paint crew on offshore platform

Breakdown of Total Cost of Recoating a Bridge*						
	3 Coat Epoxy, 2 Coat	3 Coat Epoxy, 2 Coat FEVE				
	Polyurethane System	Urethane System				
Staging Costs	\$38.96 / m²	\$38.96 / m²				
Surface Preparation	\$8.44 / m²	\$8.44 / m²				
Labor Cost For Paint Application	\$26.22 / m²	\$26.22 / m²				
Total Cost of Coatings	\$12.03 / m²	\$15.96 / m²				
Total Repainting Cost	\$85.65 / m²	\$89.87 / m²				

* "Prices of Construction Materials and Wages" October 2006 (Published in Japan)

Estimation of Total Applied Cost Per Year (Coating System)

Coating System	Total Repainting Cost	Estimated Life of Coating System	Total Applied Cost per year of Service
Polyurethane Topcoat System	\$85.65	18	\$4.76
FEVE Urethane Topcoat System	\$89.87	30	\$3.00
FEVE Urethane Topcoat System	\$89.87	60	\$1.50
FEVE Urethane Topcoat System	\$94.21 (estimated)	30	\$3.14
FEVE Urethane Topcoat System	\$94.21 (estimated)	60	\$1.57

Life Cycle Cost Advantages - Part II

Initial Cost of FEVE-Modified Topcoat:

- Depends on the level of modification. Will be 2% to 5% higher than standard polyurethane topcoat.

• FEVE-Modified Topcoat Life Expectation:

- Will depend on the level of modification. Coatings can be fine tuned to last as long as necessary to meet both short-term objectives (cost constraints) and long-term objectives (elimination of one recoat with an improved aesthetic appearance).

Extending Infrastructure Durability with FEVE Technology

Projects

Project Update: Tokiwa Bridge

- Original coating scheme:
 - 1 coat of lead-based primer
 - 2 coats of chlorinated rubber
- Repainted with fluorourethane in 1986:
 - Surface prepared to SSPC SP2/SP3
 - 2 coats of epoxy primer
 - 2 coats of fluorourethane

Projects

Project Update: Tokiwa Bridge

October 1988

April 1993

April 2007

Initial Gloss	Final Gloss	Gloss Retention	Color Change
75	69	91%	∆E=3.5

Extending Infrastructure Durability with FEVE Technology

Projects

Project: Shelby Street Bridge, Nashville TN

- Coated in 2004
- 3 coat system on steel:
 - Zinc-rich primer
 - Epoxy midcoat
 - Fluorourethane topcoat

Extending Infrastructure Durability with FEVE Technology

Projects

Project: Gateway Bridge, Nashville TN

- Coated in 2004
- Red support girder coated with FEVE-containing coating

Projects

Project: Akashi-Kaikyo Ohashi Road & Train Bridge

- Coated in 1997
- Constructed as 100-year bridge
- Expectation is one recoat only

Projects

Project Update: Katsushika Harp Bridge

- Construction completed in 1986 (shop coating began in 1982)
- 3 coat system
- Concrete bridge piers
 - Elastic primer
 - 2 fluorourethane topcoats
- Steel encasement for earthquakes in 2007

New Steel Encasement: Coated 2007 Original Concrete Foot: Coated 1987

Conclusion

For 32 years, FEVE resins have been included in exterior coatings for multiple end uses. Their excellent weatherability and corrosion resistance make them attractive for inclusion in topcoats for steel and concrete surfaces.

Acknowledgements

Takasi Takayanagi Sho Masuda Isao Kimura Takuma

For more information

www.agcchem.com

800-424-7833

Twitter @AGCChem_Amer