Introducing FORBLUE™ FLEMION™ F-8080 Series Membranes ### **Developments of FLEMION** F-808X New generation C-polymer 2nd Step (Enhance the feature of F-8020SP) - 1. Much lower water content of S-layer: - Higher mechanical strength & stability - Further increase of of ion-exchange capacity of C-polymer and optimized uniformity of ion-channels: - Reduced sensitivity to brine impurities - Extended stability of CE and CV also at high current density operation 2000 2008 2011 ### **Development Steps** ### **Choice of FLEMION Membranes** | | Cloth with Sacrificial Fibers
Tensile Strength 45 N/cm | Cloth without Sacrificial Fibers
Tensile Strength 70 N/cm | |---|--|--| | Higher current density Lower voltage Less impurity influence | Flemion F-8080/F-8080A • Lowest voltage • -60 mV | Flemion F-8081 • Robust • Lower voltage • -20 mV | | Lower current density
Smaller NaCl in
NaOH
Fewer salt blisters | Flemion F-8080HD • Higher durability • -10 mV | Flemion F-8081HD • Most durable • Most robust • +30 mV | | | Lower voltage | Fewer pinching issuesDurable for frequent tension | ### **Type of Reinforcement Cloth** With Sacrifical Fibers F-8020SP / F-8080 / F-8080A / F-8080HD Without Sacrifical Fibers F-8051 / F-8081 / F-8081HD - Many cross point - Thin fiber - Without sacrificial fiber ### **Earlier C-Polymer** Relatively narrow channel will lose the function in strongly dehydrated state. ## **Optimized C-polymer with Uniform Channel Size** Uniform channel size avoids losing of function in dehydrated stage. ### **Test for Deterioration by Cl2 Gas Stagnation** ### **Special Test Conditions for F-8080HD Tests** Cl₂ gas stagnation on anode side and high caustic strength on cathode side. Under these conditions salt crystals may be formed in membrane # Test Method Membrane 90°C Brine ### Test for Deterioration by Cl2 Gas Stagnation - F-8080 has same durability for Cl2 gas stagnation with very low voltage. - **F-8080HD** has much higher durability for Cl2 gas stagnation with lower voltage than F-8020. ### Low NaCl in NaOH at Low C.D. and High Temp F-8080HD shows lower NaCl concentration in NaOH. ### **Frequent Load Tensile Test** Comparison of F-8020SP, F-8080, F-8080HD, F-8081 and F-8081HD ### Repetition of Test until Membrane Rupture (Sum of the Value to Various Direction) - F-8080HD is nearly twice as robust for frequent load as F-8080. - F-8081 and F-8081HD could not be ruptured within certain period. ### **Features of FLEMION F-8080A** - 1. CE stability in high temperature for latest zero gap electrolyzer - 2. Resistance for Ni - 3. Higher CE in weak brine (by less circulation) Controlled C-polymer for Zero Gap Design ### Stable C.E. for Zero Gap: F-8080A AGC Anode Membrane **Higher Temp** Cathode for Zero Gap (Fine Mesh) F-8080A C.E. Temp. F-8080A: Wider operation range of high temperature ### FLEMION F-8080 : CE Decrease in Zero Gap F-8080 in zero gap shows 0.5-1% lower CE than in finite gap at high temperature. # FLEMION F-8080A: Higher CE at High Temperature F-8080A shows more than 96% CE even at 100 °C. ### **FLEMION F-8080A : Higher CE in nx-BiTAC** F-8080A in nx-BiTAC shows high enough CE at high temperature. ## **FLEMION F-8080A : Higher CE in Hydrated Condition** F-8080A shows higher CE in weak brine. ### **Choice of Membranes** | | Cloth With
Sacrificial Fibers
Tensile Strength 45 N/cm | Cloth Without
Sacrificial Fibers
Tensile Strength 70 N/cm | |--|--|--| | Higher Current Density
Lower Voltage
Less Impurity Influence | F-8080 / F-8080ALowest Voltage-60 mV | F-8081RobustLower Voltage-20 mV | | Lower Current Density
Smaller NaCl in NaOH
Fewer Salt Blisters | F-8080HDHigher Durability-10 mV | F-8081HDMost DurableMost Robust+30 mV | | | Lower Voltage | Less Pinching IssuesDurable for Frequent Tension | ### **Voltage Stability in AGC Plant** F-8080 shows most stable voltage more than three years operation. ### **Voltage in AGC Plant** AGC Chiba Plant (F-8080, UHDE G5) F-8080 shows most stable voltage more than three years operation. #### **Stable CE in AGC Plant** AGC Chiba Plant (F-8080, UHDE G5) F-8080 keeps stable current efficiency higher then 95.5% for more than three years operation. #### **For More Information:** Katie Jarvis @agc.com