

Compound Solutions for High Voltage Wire Insulation

AGC Chemicals Americas, Inc.

Your Dreams, Our Challenge

Fluon+ Benefits

- Excellent electrical and insulating properties
- Wide range of operating temperatures
- Heat and chemical resistant
- Lower dielectric constant
- Higher partial discharge inception voltage (PDIV)

Material	Dk	Dk @200 ℃	Volume resistivity Ω · cm
PFA/PTFE	2.09	2.10	>10 ¹⁸
ETFE	2.50	2.40	>10 ¹⁸
PEEK	3.30	5.40	>1017
PI	3.50	4.20	>10 ¹⁴
PAI	3.80	4.80	>1014

Requirements for Next Generation Magnet Wire

- Fuel/motor efficiency
- Increased output density (>800 V)
- Increased PDIV (1500+ V)
- Space saving
- Higher motor output

Structural Changes of Wires for EV, HEV, PHEV Inverter-Drive Motors

Current Structure **200 V**

- Enamel layer
- Maximum 50µm thickness
- Insufficient reliability for high voltage
- Pinhole defect

Current Structure **400 V**

- Primer required to overcome lack of adhesion
- Cracking/wrinkle s when bent
- Poor flexibility

Next Generation 800 V+

- Single layer structure
- Heat resistant
- High flexibility
- Low dielectric constant
- High PDIV
- Varnish/enamel-free

Why is Higher PDIV Required?

	PDIV/V		
PI enamel	800-900		
PI enamel+PEEK layer	1400		
New criteria	> 1500		

AGC

Next generation-800 V+

- Instantaneous voltage during sudden braking and sudden acceleration is 2 to 3 times the normal voltage
- For 400 V motor, instantaneous voltage can be within PDIV \Rightarrow Partial discharge does not occur
- For 800 V+ motor, instantaneous voltage exceeds PDIV ⇒ Partial discharge occurs

>> Higher PDIV

Why Flexibility Requirement?

Wires in motor stator are winded and bended for more occupancy rate of the stator

AGC

Main motor

Wires in motor stator

- Avoids cracking and wrinkles when bending
- Partial discharges are easier to occur at corners

- Insufficient reliability for high voltage
- Pinhole defect

- Poor adhesion (primer needs)
- Cracking when bending
- Poor flexibility

Benefits

- Strong adhesion to Cu/PI
- No cracking (good flexibility)
- Better electrical insulation

AGC

High Voltage Wire Insulation Materials

Test	Neat PEEK	PPS compound	ETFE compound	XL-ETFE compound	PFA compound	PEEK compound
Dielectric constant, Er	3.2	3.0	2.6	2.6	2.1	2.8
PDIV, RT	Poor	Poor	Very Good	Very Good	Excellent	Good
PDIV, 200 °C	Poor	Good	Very Good	Very Good	Excellent	Good
Flexibility (adhesion to the copper core and reduced cracking)	Poor	Good	Good	Good	Excellent	Excellent
Corona resistance	Poor	Poor	Good	Good	Excellent	Excellent
ATF resistance	Good	Good	Excellent	Excellent	Excellent	Excellent

Your Dreams, Our Challenge

PFA-Based Compound

• Better flexibility and adhesion to polyimide and copper without losing outstanding insulation and thermal properties of PFA.

Adhesion to Cu/PI

AGC

Flexibility

Flat wise + edge wise bending testing

No damage, no cracking, no wrinkles

PFA-Based Compound

Test		Unit	PFA	PFA-based compound
Physical	Melting point	С	300	300
	Specific gravity	_	2.1	2.1
	Melt flow rate (MFR) 327C/5kg	g/10 min	11	11
	Tensile strength	MPa	39	35
Mechanical	Tensile elongation	%	440	400
	Flex modulus	MPa	560	380
	Volume resistivity	Ω • cm	> 10 ¹⁸	> 10 ¹⁸
	Dielectric constant – Er	_	2.09	< 2.10
Electrical	Tanδ 1kH/z/1MHz	tanδ	< 0.0003	< 0.0003
Electrical	Corona resistance	Hour	> 200	> 200
	PDIV	V	1,600	1,700
	Withstand voltage	V	> 10,000	> 10,000
Adhesion	to Polyimide	NI/cm	Delamination	28.0
	to Copper		2.1	29.1
Thermal	TGA-5wt%	C	505	508
	TGA-10wt%		520	525

AGC

PEEK-Based Compound: mPEEK

- Better flexibility and impact strength than PEEK
- Flexible

AGC

- Impact resistant
- Tests under evaluation: mPEEK High flow-2

Flat wise + edge wise, 180° bending testing

PEEK-Based Compound : mPEEK

Test		Unit	PEEK A	mPEEK Low Flow KB- 2220	mPEEK Medium Flow KB- 2020	mPEEK High Flow - 2
Physical	Melt flow rate (MFR) 372 °C/5kg	g/10min	22	8	23	123
Mechanical	Tensile strength	Мра	96	78	71	54
	Tensile elongation	%	20	99	24	16
	Flex modulus	Мра	3800	3000	2800	2710
	Impact strength – Izod at 23 °C	J/m	38	No break	102	135
	Impact strength – Izod at 40 °C	J/m	34	95	38	91
Electrical	Dielectric constant -ɛr 1kHz/1Mhz	_	3.2	3.0	2	2.9
	tanδ 1kHz/1Mhz	Tanδ	0.003	0.004	0.005	0.005

AGC

PEEK-Based Compound: PDX-K

 Better insulation properties, flexibility

AGC

- Better adhesion to polyimide and copper
- No damage, cracking or wrinkles
- Tests under evaluation (PDIV, adhesion)

Flat wise + edge wise, 180° bending testing

PEEK-Based Compound: PDX-K

Test		Unit	PEEK A	PDX-K- 22026	PDX-K- 22027	PDX-K- 22029
Physical	Melt flow rate (MFR) 375C/5kg	g/10min	22	10	25	42
Mechanical	Tensile strength	Мра	96	98	93	80
	Tensile elongation	%	20	26	31	28
	Flex modulus	Мра	3800	2616	2663	2748
	Impact strength at 23C	J/m	38	No break	180	86
	Impact strength at -40C	J/m	34	161	125	52
Electrical	Corona resistance	Hour	-	>200	>200	>200
	Dielectric constant - εr	-	3.2	2.7	2.7	2.7
	Tanδ 1kHz/1MHz	tanδ	0.003	0.004	0.002	0.002

AGC

PEEK-based Compound: PDX-K

Mandrel winding test (IEC 60851-3)

Test machine

Material:PDX-K-22027

Conductor:1.8*2.3 (mm) Insulation thickness:apprx.0.12mm

> No damage No cracking No wrinkles

Some tests under evaluation (PDIV, adhesion, etc.)

Your Dreams, Our Challenge

ε_r/PDIV

Flexibility

Adhesion to

Cu/PI

Contact Us for More Information

Learn more www.agcchem.com 610-423-4300 800-424-7833

Your Dreams, Our Challenge