

# Introduction: Fluon+™ IR-MARK and UV-MARK Products

AGC Chemicals Americas, Inc. Tuesday, Oct. 15<sup>th</sup>, IWCS Supplier Spotlight Presented by Michael Sanchez



Your Dreams, Our Challenge



#### Importance of Proper Identification

#### • Safety issues

- Need to ensure we know which cables are high voltage / high current types, e.g. EV high voltage lines (should never be cut by first responders)
- Need to know if the cable we chose is up to the task it has been selected for, e.g. need to sure a 12-gauge wire (vs. thinner 14-gauge) for a 20ampere 115V circuit
- Connectivity issues
  - Need to connect identical circuits across power buses, junctions, etc. (avoids cross-talk and/or short-circuits), e.g. – Deepwater Horizon blow-out preventor mis-wiring



### Wire & Cable Industry ID Methods

- Colorization of the cladding itself (during extrusion)
- Co-extrusion of striping/banding with the cladding
- Post-printing (gravure, pad, ink-jet) of striping, banding, text, etc. on the surface of the cladding
  - Requires surface treatment before and after printing
  - Requires special inks
- Laser marking of the surface of the cladding



### **Typical Solvent-based Ink Formula**

- Solvent system
- Binder system
- Pigment(s)
- Leveling agents, adhesion promoters, wetting agents, etc.





### Wire & Cable Industry ID Methods

- Colorization of the cladding itself (during extrusion)
- Co-extrusion of striping/banding with the cladding
- Post-printing (gravure, pad, ink-jet) of striping, banding, text, etc. on the surface of the cladding
  - Requires surface treatment before and after printing
  - Requires special inks

Laser marking of the surface of the cladding

## AGC

### **Advantages of Laser Marking vs. Printing**

- Laser marking is non-contact
- Laser marking is non-damaging when an additive system is used with the plastic cladding material
- Laser marking is faster than environmentally-friendly print methods
- Ink is not required
  - No need for hazardous print solvents
  - No need for viscosity / tint-strength adjustments by operators.
  - Surface pretreatment is not required
  - Post-treatment / post cure is not required





#### Disadvantages of Laser Marking vs. Printing

Laser markings tend to be dark in color

- Laser markings work best for light-colored substrates
- Dark-colored substrates are a problem, due to poor contrast between the laser marking and the substrate
  - Additive suppliers are working on the issue
- Carbon-black claddings are a major problem

AGC

#### Specific Types of Laser Marking & Engraving Systems

| Laser<br>Type | Subtype | Wavelength | Mechanism    | Substrates                                | Comments                                                                | Recommended<br>"-MARK" Types |
|---------------|---------|------------|--------------|-------------------------------------------|-------------------------------------------------------------------------|------------------------------|
| CO2           | IR      | 10600nm    | Char         | Paper, wood, leather,<br>rubber, plastics | Tend to be expensive;<br>high-powered; versatile                        | IR; UV                       |
| Nd:YAG        | IR      | 1064nm     | Char or Foam | Metals; plastics                          | High power; high heat generation                                        | IR; UV                       |
| Fiber         | IR      | 1064nm     | Char or Foam | Metals; plastics                          | Lower power<br>requirements; fast<br>(becoming the most<br>common type) | IR; UV                       |
| Green         | Visible | 532nm      | Char or Foam | Metals; plastics                          | Relatively new type; can<br>engrave wide range of<br>substrates         | UV                           |
| UV            | UV      | 355nm      | Char or Foam | Soft plastics, glass                      | Can be gentle to<br>substrates                                          | UV                           |



#### Introduction to the Fluon+ IR-MARK and UV-MARK products

- Fluon+ IR-MARK and UV-MARK products incorporate susceptor materials. These enhance reflectivity of the base material, thereby concentrating laser energy to optimize the marking process
- Laser energy is concentrated near the surface of the cladding (or part)
  - Best efficiency parts are marked with lowest laser power settings
  - Least amount of damage (particularly important for IR)
- Products are available as concentrates for letdown in fluoropolymer resins (FEP, ETFE, PFA)
  - Other resins are possible
  - Ready-to-use formulas are possible
  - Best performance is with light colors

### **Core Grade Types and Applications**

• Fluon+ IR-MARK products

- Use at 1.0-5.0% loading by weight
- Only slight impact on colorway
- Fluon+ UV-MARK products
  - Use at 2.0-10.0% loading by weight
  - Slight whitening / brightening effect on colorway

#### (467015985)

AGC

#### (428015825)

(442015675)

#### Fluon+ IR-MARK Grades (Semi-commercial)

#### (SCP) C-88AXM IR-MARK HT

- ETFE-based concentrate for use in color-critical applications with IR-laser systems
- use at 1.0% to 5.0% loading

#### (SCP) FEP IR-MARK 9800

- FEP-based concentrate for use in color-critical applications with IR-laser systems
- use at 1.0% to 5.0% loading

#### (SCP) PFA IR-MARK 3000

- PFA-based concentrate for use in color-critical applications with IR-laser systems
- use at 1.0% to 5.0% loading

# AGC

#### Fluon+ UV-MARK Grades (Semi-commercial)

#### (467015986) (SCP) C-88AXM UV-MARK HT

- ETFE-based concentrate for use with light colors and UV-laser systems
- use at 2.0% to 10.0% loading

#### (428015826) (SCP) FEP UV-MARK 9800

- FEP-based concentrate for use with light colors and UV-laser systems
- use at 2.0% to 10.0% loading

#### (442015676) (SCP) PFA UV-MARK 3000

- PFA-based concentrate for use with light colors and UV-laser systems
- use at 2.0% to 10.0% loading

Your Dreams, Our Challenge

©AGC Chemicals Americas, Inc.

### **Achieving Maximum Contrast**

| Colors                                                                     | Laser type                | Recommended -<br>MARK(s) Types | Print will<br>be this<br>color | Comments                                                                                                                                                                            |
|----------------------------------------------------------------------------|---------------------------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| White<br>Yellow<br>Light Gray<br>Light Brown                               | IR (Fiber,<br>NdYAG, CO2) | IR-MARK                        | Dark brown<br>to black         | Important to run a "flat<br>surface" test, using<br>variable loading levels of<br>the IR-MARK or UV-MARK<br>additive system and<br>varying power settings to<br>determine optimums. |
| Light Blue<br>Light Green<br>Light Violet<br>Pink<br>Orange<br>Red<br>Aqua | UV                        | UV-MARK                        | Light brown<br>to black        |                                                                                                                                                                                     |
| Black<br>Dark Brown<br>Dark Green<br>Dark Blue                             | IR (Fiber,<br>NdYAG, CO2) | IR-MARK                        | Dark brown<br>to black         | Contrast will be reduced<br>due to dark marking on a<br>dark background.                                                                                                            |
| Dark Violet                                                                | UV                        | UV-MARK                        | Dark brown<br>to black         |                                                                                                                                                                                     |

#### **Recommendations for Success – IR-MARK and UV-MARK Products**

- Need to find a balance between product loading, print speed and laser power
- Printing a **test pattern** can help

- Compounds need to be molded into a flat surface prior to testing (talk to AGC about this, as we can help!)
- Printer manufacturers should have capability to mark test patterns on the flat surfaces
- Photomicroscope is best used for examining print quality, resolution & location/extent of heat-affected or heat-damaged areas

#### **IR Test Pattern Example**

- Substrate = ETFE (injection-molded disk)
- Additive = C-88AXM IR-MARK HT

- Marking was performed with IR laser (fiber-type)
- Chromatic pigment (MMO blue) was used;
  ~0.7% loading



# How fast can we get away with (maximum)?

### How fast should we print (minimum)?









# How fast can we get away with (maximum)? How fast should we print (minimum)?

### Preliminaries – (Test Patterns)



- Pattern to the left incorporates print speed and laser power settings into one useful grid
- Need to balance print speed and laser power for maximum resolution at minimum damage

# AGC

### What settings should be avoided?



- Very heavy degradation
  - 30kHz (100; 150; 200mm/s)
  - 20kHz (100; 150mm/s)
- Heavy degradation
  - 30kHz (300; 400mm/s)
  - 20kHz (200; 300mm/s)
  - 15kHz (100; 150; 200; 300mm/s)
  - 10kHz (100; 150; 200mm/s)
  - 5kHz (100mm/s)
- Moderate degradation
  - 30kHz (500mm/s)
  - 20kHz (400mm/s)
  - 15kHz (400mm/s)
  - 10kHz (300mm/s)
  - 5kHz (150mm/s)

### What settings work best?

X HV HV Μ X X X HV Μ XX Μ X X HV XXX XXXX X

AGC

- Okay but heavy marking
  - 20kHz (100mm/s)
  - 10kHz (400mm/s)
  - 5kHz (200; 300; 400mm/s)
- Okay with moderate pixelation
  - 20kHz (500mm/s)
  - 15kHz (500mm/s)
  - 10kHz (500mm/s)
  - 5kHz (500mm/s)

Best results are attained at 500mm/s, at the 5kHz to 15kHz power settings. Fluon+ IR-MARK is working <u>as</u> <u>predicted</u> in this scenario.

#### **UV Test Pattern Example**

- Substrate = ETFE (150µm thickness)
- Additive = C-88AXM UV-MARK HT

- Marking was performed with UV laser (fiber-type)
- Chromatic pigment (organic orange) was used; ~0.25% loading

#### **UV Laser Test Pattern**

- Pattern to the left incorporates print speed and laser power settings; same as for IR types
- Smaller heat-affected area (smaller pixels are possible)
- As before need to balance print speed and laser power for maximum resolution at minimum damage



#### **Summary**

- Fluon+ IR-MARK and UV-MARK products were designed to optimize laser marking efficiency in fluoropolymers. (Lower power and faster print speed with less heat damage.)
- New standard IR grades have less impact on colorways (which will not be as dark) than previous Generation 1 products
- Standard UV-MARK grades are a new addition for 2024.

- All standard products are now available in stand-alone concentrated forms.
- Custom products (ready to use; other base resins) are available upon request.



©AGC Chemicals Americas, Inc.