AGC Chemicals Americas, Inc.

SUNSPERA[™] Fine Silica Microspheres for Catalyst Supports

AGC

AGCSI Manufacturing location

1985: Started production of M.S.GEL1990: Started production of SUNSPHERE1998: Started production of SUNLOVELY

©AGC Chemicals Americas, Inc.

RESIFA™ SUNSPERA Production

AGC Your Dreams, Our Challenge

- AGC is a leader in microspherical silica
- ISO 9001:2015 certified
- Wide range of particle size and porosity
- Serving customers globally through AGC regional locations

©AGC Chemicals Americas, Inc.

Material to Products

Enlarged photograph of surface

Photograph of Cross Section

...think of a spherical sponge with uniform pores

SUNSPERATM

Selecting the right catalyst support...

...is important in optimizing the manufacturing process Factors to consider:

- Thermal Stability affects the reaction rate between the catalyst and reacting material
- Shape and Packing Density can affect fluid flow rates and processes.
- **Compression Strength** of the catalyst carrier needs to withstand the various pressures and loads subjected during the chemical reaction and process.
- Surface Area and Porosity directly relate to the reactivity levels of the chemical process. The higher the surface area, the higher the number of sites for a catalyst to attach, which leads to higher reactivity levels.

RESIFA™ SUNSPERA™ silica

Key Attributes

- Spherical shape
- Wide combination of particle size and porosity Particle size range: 3µm - 70µm Pore volume range: 0.7 - 2.3 ml/g High and wide surface area range: 40 - 800 m²/g
- Uniform porosity throughout particle
- Narrow particle size and pore size distribution

Benefits

- Morphology helps control polymerization reaction
- High loading of catalyst leads to high catalyst activity
- Produces high specific gravity and high bulk density of the polymer
- · Improved morphology of finished polymer
- Optimizes production
- Prevents reactor fouling

H-32

H-201

DM-L-303

SUNSPERA[™] silica gels are chemically inert, have high surface areas and a range of porosity levels. The properties of the SUNSPERA[™] silica gel have a significant effect on the polymerization process and properties of the finished polymer.

How we compare...

Spherical, uniform structure leads to performance consistency

For Slurry/Cascade Polyolefin Polymerization Processes

Grade	HH Series High Surface Area, Hard Particles			HB Series High Surface Area, Breakable Particles				LB Series Low Surface Area, Breakable Particles			
	H-31	H-51	H-121	H-201	H-32	H-52	H-122	H-33	H-53	L-52	L-123
Suitable for	Polyolefins not requiring transparency			Polyolefins requiring transparency such as HDPE and MDPE				Polyolefins requiring transparency such as LLDPE Metallocene			
Mean particle size (µm)	3	5	12	20	3	5	12	3	5	5	12
Specific surface area (m ² /g)	800	800	800	800	700	700	700	700	700	300	300
Pore volume (ml/g)	0.9	0.9	0.9	0.9	1.6	1.6	1.8	1.8	1.8	1.6	2.0
Pore diameter (nm)	4.5	4.5	4.5	4.5		-	-		140	12	50
Oil absoption capacity (ml/100g)	150	150	150	150	300	300	300	400	400	300	400
 Small pore size allows for polymerization to occur on surface Original shape is maintained throughout polymerization High Surface Area leads to high catalyst activity 			 Larger pore size allows for polymerization to occur on surface and at the core Particle fragmentation during polymerization High Surface Area leads to high catalyst activity 					 Wide pore size allows for ethylene gas to impregnate inside the particle High catalyst activity due to easy fragmentation of silica particles 			

SUNSPERA™ Product Selection Guide

For Gas Phase Polyolefin Polymerization Processes

200	DM Series						
Grade	DM L-303	D-70-120A(LV)					
Average particle size (µm)	35	65					
Specific surface area (m²/g)	300	450					
Pore volume (ml/g)	2.1	1.7					
Pore diameter (nm)	60	15					
Span value (-)	0.5	0.95					
Mechanical strength (MPa)	2.9	6.3					
	 Narrow Particle Size distribution Resulting polyolefin morphology is The 300 and 500 series are recommended in the series are very suitable for Z 	s excellent and has higher bulk density nended for Metallocene catalyst support iegler-Natta or Phillips catalysts					

DM-L-303

For Organic Synthesis of Organic Compounds

Grade	H-31	H-51	H-121	H-201	D-50-60A	D-100-60A	D-150-60A
Mean particle size (µm)	3	5	12	20	50	100	150
Specific surface area (m ² /g)	800	800	800	800	700	700	700
Pore volume (ml/g)	0.9	0.9	0.9	0.9	1.15	1.15	1.15
Pore diameter (nm)	4.5	4.5	4.5	4.5	6.5	6.5	6.5
Oil absoption capacity (ml/100g)	150	150	150	150	-	-	-

Other grades with different particle sizes and larger pore sizes are available.

Pore Size & Particle Size Distribution

Effect on Surface Area

Effect of Calcination Treatment on Surface Area

Product Name	H-51	H-52	H-53	L-51	D-50- 60A	D-70- 100A(LV)	D-70- 150A(LV)
<u>Non Heating</u>	826	680	750	296	753	611	401
400℃×2Hr	807	661	657	301	757	613	401
	(97.7)	(96.4)	(97.8)	(100.0)			
600℃×2Hr	740	592	602	291	781	642	414
	(89.6)	(86.3)	(89.6)	(96.7)			
800℃×2Hr	553	347	435	253	728	611	385
	(66.9)	(50.6)	(64.7)	(84.1)	(96.7)	(100.0)	(96.0)
1000℃×2Hr	18	62	157	10	453	397	238
	(2.2)	(9.0)	(23.4)	(3.0)	(60.2)	(65.0)	(59.4)

(): Decreasing ratio to surface area of non heating product (%)

Specific Surface Area vs. Calcination Temperature

Only L-51 in SOLESPHERE does not decrease the surface area, other grades begin to decrease gradually at a temperature of 400°C. On the other <u>hand</u> M.S.GEL can keep the surface area at temperatures up to 800°C.

Effect on Pore Volume

						unit: m2/g		
Product	H-51	H-52	H-53	L-51	D-50-	D-70-	D-70-	
Name					60A	100A(LV)	150A(LV)	
<u>Non Heating</u>	0.72	1.48	1.71	0.80	1.12	1.41	1.73	
400℃×2Hr	0.69	1.42	1.67	0.80	1.12	1.40	1.69	
	(95.8)	(95.9)	(89.6)	(100.0)	(100.0)			
600°C×2Hr	0.62	1.31	1.54	0.78	1.09	1.42	1.71	
	(86.1)	(88.5)	(90.1)	(97.5)	(97.3)	(100.0)	(100.0)	
800°C×2Hr	0.46	1.03	1.30	0.71	0.96	1.31	1.57	
	(63.9)	(69.6)	(76.0)	(88.8)	(85.7)	(92.9)	(90.8)	
1000℃×2Hr	0.02	0. 29	0.72	0.02	0.54	0.74	0.72	
	(2.8)	(19.6)	(42.1)	(2.5)	(48.2)	(52.5)	(41.6)	

Effect of Calcination Treatment on Pore Volume

(): Decreasing ratio to pore volume of non heating product (%)

Pore Volume vs. Calcination Temperature

SOLESPHERE beside L-51 begin to decrease gradually the pore volume at a temperature of 400°C. The decreasing of the pore volume for M.S.GEL begins at a temperature of 600°C.

How we compare after Polymerization

Bare Silica After Polymerization Image: Silica Image: S

Competitor

IIIIRESIF∕I SUNSPERA™

for Catalyst Supports

©AGC Chemicals Americas, Inc.

Process of SUNSPHERE

Process of SUNSPHERE DM grade

How to make DM grade?

Mechanism to make emulsified drop-let without balloon shape

Your Dreams, Our Challenge